Highlights from T2K

David Hadley on behalf of the T2K collaboration ICNFP2013

Neutrino Oscillations

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

- Flavour states \neq Mass states
- Measure Neutrino Mixing (PMNS) Matrix with neutrino oscillations

Two main oscillation analyses at T2K:

• $P(\mu \rightarrow \mu) \approx 1 - \sin^2(2\theta_{23}) \sin^2(\frac{\Delta m^2 L}{4E})$ • $P(\mu \rightarrow e) \approx \sin^2(\theta_{13}) \sin^2(2\theta_{23}) \sin^2(\frac{\Delta m^2 L}{4E})$

ヘロン 人間と 人間と 人間と

3

The T2K Experiment

Goals

- discover ν_e appearance in a ν_μ beam
- make precise measurements of ν_μ disappearance
- study neutrino-nucleus interactions at $E_{
 u} \sim 1 {
 m GeV}$

- A high intensity proton beam at J-PARC produces a narrow-band ν_μ beam with a peak energy of 0.6 GeVat the far detector,
- The Far detector is Super-Kamiokande, a 50kton water Cherenkov detector, located 2.5° off-axis and 295km from the production point.
- Detectors in the ND280 complex at 280m are used to directly measure the neutrino beam properties and neutrino-nucleus interaction cross sections.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

The T2K Beam

T2K Run1-4 Flux at Super-K

- 30 GeVproton beam hits graphite target
- Magnetic horns focus π^+
- 90% u_{μ} beam from π^+ decay
- Beam peak at $\sim 0.6 {
 m GeV}$
- Off-axis detectors
 - exposed to narrow-band beam near oscillation maximum
 - suppress high energy tail reduced backgrounds

-- 0

The T2K Beam

- T2K has collected 6.6×10^{20} POT to date (Run 1-4).
- \blacktriangleright $\sim 8\%$ of design POT so far.

Neutrino Interactions

Charged Current Quasi-elastic scattering

- ► $\nu_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}$
- ▶ $\nu_e + n \rightarrow e^- + p$
- E_ν reconstruction from μ momentum (ignoring nuclear effects)

Resonant Single π Production

 $\nu_{\mu} + N \rightarrow \nu_{\mu} + N^{*}$ $\nu_{\mu} + N \rightarrow \mu + N^{*}$ $N^{*} \rightarrow N' + \pi$

Off-axis Near Detector (ND280)

B

TPCI

GD

TPC3

- Constrain beam flux and neutrino interaction model
- Measure cross sections

ND280 Tracking Detector

- The Fine Grained Detector (FGD1) consists of layers of 10 × 10mm plastic scintillator bars readout with Multi-Pixel Photon Counters (MPPCs).
- FGDs provide target mass and vertex reconstruction.
- The Time Projection Chambers (TPCs) provided PID based on dE/dx in the argon based gas and momentum measurement from track curvature in the magnetic field.

an ser ser le

ND280 Selection

	CC0π purities	CC1π purities	CCother purities
СС0л	72.6%	6.4%	5.8%
CC1π	8.6%	49.4%	7.8%
CCother	11.4%	31%	73.8%
Bkg(NC+anti-nu)	2.3%	6.8%	8.7%
Out FGD1 FV	5.1%	6.5%	3.9%

- Measurements of neutrino interactions in the near detector.
- Select samples $1\mu + 0\pi$, $1\mu + 1\pi$, $1\mu + N\pi$.

ND280 Selection

- Measurements of neutrino interactions in the near detector.
- Select samples $1\mu + 0\pi$, $1\mu + 1\pi$, $1\mu + N\pi$.

ND280 Constraint

Parameter	Prior to ND280 Constraint	After ND280 Constraint (Runs 1-4)
M _A ^{QE} (GeV)	1.21 ± 0.45	1.223 ± 0.072
${\sf M}_{\sf A}^{\sf RES}$ (GeV)	1.41 ± 0.22	0.963 ± 0.063
CCQE Norm.*	1.00 ± 0.11	0.961 ± 0.076
CC1 T Norm.**	1.15 ± 0.32	1.22 ± 0.16
NC1π ⁰ Norm.	0.96 ± 0.33	1.10 ± 0.25
*For E <1.5 GeV	**For E <2.5 GeV	

 Constraint from near detector measurements gives a significant reduction on the flux and cross section uncertainties at SK.

	ν _e Prediction (Events)	Error from Constrained Parameters
No ND280 Constraint	22.6	26.5%
ND280 Constraint	20.4	3.0%

ND280 Flux Integrated CC Inclusive Cross Section Measurement

- ▶ Select events with µ[−].
- Unfold the reconstructed $p_{\mu} \cos(\theta_{\mu})$ distributions to estimate the true muon kinematics.
- Measure double differential $p_{\mu} \cos(\theta_{\mu})$ distribution and total flux integrated cross section.
- Prediction from 2 neutrino MC generators (NEUT and GENIE) = 50

ND280 Energy Dependent CCQE Cross Section Measurement

see talk by D. Hadley @ NuFact2013

- Select μ^- events, veto pions.
- Fit the MC model to p_μ − cos(θ_μ) distribution to extract CCQE cross section in bins of E_ν
- A χ^2 test gives a *p*-value of 17% indicating agreement between the data and the cross section model.

ND280 Energy Dependent CCQE Cross Section Measurement

see talk by D. Hadley @ NuFact2013

- Select μ^- events, veto pions.
- Fit the MC model to p_μ − cos(θ_μ) distribution to extract CCQE cross section in bins of E_ν
- A χ^2 test gives a *p*-value of 17% indicating agreement between the data and the cross section model.

ND280 Neutral Current Elastic Cross Section Measurement

see talk by D. Ruterbories @ NuFact2013

- Select protons reconstructed in the π^0 detector
- Veto Michel decay electrons
- Control contamination from external backgrounds with side-bands
- Measure a flux-integrated total cross section,

$$<\sigma>_{\rm flux} = 2.24 \times 10^{-39} \pm 0.07({\rm stat.}) + 0.53 - 0.63({\rm sys.}) \frac{{\rm cm}^2}{{\rm nucleon}}$$

- cf. MC predictions
 - $\sigma_{\rm NEUT} = 2.02 \times 10^{-39} {\rm cm}^2/{\rm nucleon}$
 - $\sigma_{\text{GENIE}} = 1.78 \times 10^{-39} \text{cm}^2/\text{nucleon}$

Far Detector

- 22.5kton Water Cherenkov Detector
- Cherenkov ring properties provide momentum and PID

Example MC Event Displays

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Far Detector PID

- New reconstruction algorithm gives improved background rejection and resolution.
 - Maximum likelihood fit for each particle hypothesis
 - Likelihood: $\prod_{i}^{\text{photo-tubes}} \lambda(\overrightarrow{p}|Q,t)$
 - Discriminating variable: (Best-fit point) Likelihood ratio for each hypothesis e.g. for e vs π⁰: λ_e(^ˆp, ^ˆx)|Q, t)/λ_{π⁰}(^ˆp, ^ˆp).

Event Selection for the ν_e appearance analysis

- Fully contained in fiducial volume
- $N_{\rm rings} = 1$
- Electron-like PID
- $E_{\rm visible} > 100 {\rm MeV}$
- Decay electron veto
- ► *E_{rec}* < 1250MeV
- ▶ π^0 veto

Fitted Distributions for the ν_e appearance analysis

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Results of the ν_e appearance analysis

- Observed 28 events (expected 5.2 for background only hypothesis)
- 7.5σ exclusion of background-only hypothesis
- Concrete observation of ν_e appearance in a ν_μ beam
- Best-fit value / 68% CL / 90% CL for sin²2θ₁₃ at various values of δ_{CP}.

	Best fit with one standard deviation
Normal hierarchy	$0.150\substack{+0.039\\-0.034}$
Inverted hierarchy	$0.182^{+0.046}_{-0.040}$

Preliminary results for $\delta_{CP}=$ 0, $\sin^2 2\theta_{23}=$ 1.0 and $\Delta m^2_{32}=$ 2.4 \times 10 $^{-3} \rm eV^2.$

ensensensen e va@

Latest Results from the ν_{μ} appearance analysis

- ▶ 58 events observed (expected 204 ± 17 with no oscillation).
- NB contour significantly affected by octant (both results reported).

	$\sin^2 2\theta_{23}$	$\Delta m^2_{32} \ [eV^2]$	χ^2 / ndf
$\theta_{23} \le \pi/4$	1.000	$2.44 imes 10^{-3}$	56.04/71
$\theta_{23} \ge \pi/4$	0.999	$2.44 imes10^{-3}$	56.03/71

Summary

- ▶ J-PARC operating at 220kW in latest running period.
 - 6.63×10^{20} POT accumulated.
- Discovery of ν_e appearance in a ν_μ beam (7.5 σ)
 - with only a fraction of the planned POT.
- Precision measurements of ν_{μ} disappearance very important in post- θ_{13} world.
- New Cross Section results released
 - CC Inclusive
 - CCQE
 - NCE
 - many more cross section analyses in progress.

Backup

 $u_{\mu}
ightarrow
u_{\mu}$ probability in a vacuum

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - (c_{13}^{4} \sin^{2} 2\theta_{23} + s_{23}^{2} \sin^{2} 2\theta_{13}) \sin^{2} \Delta_{atm} \\ + \left\{ c_{13}^{2} (c_{12}^{2} - s_{13}^{2} s_{23}^{2}) \sin^{2} 2\theta_{23} + s_{12}^{2} s_{23}^{2} \sin^{2} 2\theta_{13} - c_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \cos \delta \right\} \\ \times \left\{ \frac{1}{2} \sin 2\Delta_{solar} \underline{sin} 2\Delta_{atm} + 2 \underline{sin}^{2} \Delta_{solar} \underline{sin}^{2} \Delta_{atm} \right\} \\ - \left\{ \sin^{2} 2\theta_{12} (c_{23}^{2} - s_{13}^{2} s_{23}^{2})^{2} + s_{13}^{2} \sin^{2} 2\theta_{23} (1 - c_{\delta}^{2} \sin^{2} 2\theta_{12}) \\ + 2s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \sin 2\theta_{3} \cos 2\theta_{23} c_{\delta} \\ - \frac{1}{2}c_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \cos \delta s_{23}^{2} s_{12}^{2} \\ + \sin^{2} 2\theta_{23} c_{13}^{2} (c_{12}^{2} - s_{13}^{2} s_{12}^{2}) + s_{13}^{2} s_{23}^{2} \sin^{2} 2\theta_{13} \right\} \times \underline{sin}^{2} \Delta_{solar} \\ \mathbf{V} \qquad \mathbf{T} \mathbf{Z}\mathbf{K}: \mathbf{L} = \mathbf{295} \, \mathbf{km}, \mathbf{E}_{\mathbf{v}} \, \mathbf{peaks} \, \mathbf{at} \approx \mathbf{0.6} \, \mathbf{GeV} \\ - \sin^{2} \Delta_{solar} \approx \mathbf{0} \\ P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \sim \mathbf{1} - \left(\underline{\cos^{4} \theta_{13} \cdot \sin^{2} 2\theta_{23}} + \frac{\sin^{2} 2\theta_{13}}{2\theta_{23}} + \frac{\sin^{2} 2\theta_{13}}{2\theta_{13}} \cdot \frac{\sin^{2} \theta_{23}}{2\theta_{13}} \cdot \frac{\sin^{2} \theta_{23}}{4E} \cdot \frac{\sin$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
Error source	w/o ND280 fit	w/ ND280 fit	w/o ND280 fit	w/ ND280 fit
Beam only	10.6	7.3	11.6	7.5
M_A^{QE}	15.6	2.4	21.5	3.2
$M_A^{\hat{R}ES}$	7.2	2.1	3.3	0.9
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	7.1	4.8	9.3	6.3
$CC1\pi$ norm. $(E_{\nu} < 2.5 \text{ GeV})$	4.9	2.4	4.2	2.0
$NC1\pi^0$ norm.	2.7	1.9	0.6	0.4
CC other shape	0.3	0.3	0.1	0.1
Spectral Function	4.7	4.8	6.0	6.0
p_F	0.1	0.1	0.1	0.1
CC coh. norm.	0.3	0.3	0.3	0.2
NC coh. norm.	1.1	1.1	0.3	0.2
NC other norm.	2.3	2.2	0.5	0.5
$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	2.4	2.4	2.9	2.9
W shape	1.0	1.0	0.2	0.2
pion-less Δ decay	3.3	3.1	3.7	3.5
SK detector eff.	5.7	5.6	2.4	2.4
FSI	3.0	3.0	2.3	2.3
PN	3.6	3.5	0.8	0.8
SK momentum scale	1.5	1.5	0.6	0.6
Total	24.5	11.1	28.1	8.8

Systematic Uncertainties in ν_e oscillation analysis

Fraction uncertainty on predicted number of ν_e events for each source of systematic error ($p - \theta$ analysis).

Beam Composition

	Flux Percentage of Each Flavors			
Parent	$ u_{\mu}$	$ar{ u}_{\mu}$	ν_e	$\bar{\nu}_e$
Secondary				
π^{\pm}	60.0%	41.8%	31.9%	2.8%
K^{\pm}	4.0%	4.3%	26.9%	11.3%
K_L^0	0.1%	0.9%	7.6%	49.0%
Tertiary				
π^{\pm}	34.4%	50.0%	20.4%	6.6%
K^{\pm}	1.4%	2.6%	10.0%	8.8%
K_L^0	0.0%	0.4%	3.2%	21.3%

Flux Percentage of All Flavors					
Parent	$ u_{\mu}$	$ar{ u}_{\mu}$	$ u_e$	$\bar{ u}_e$	
π^{\pm}	87.5%	5.5%	0.6%	0.0%	
K^{\pm}	5.0%	0.5%	0.4%	0.0%	
K_L^0	0.1%	0.2%	0.1%	0.1%	

ND280 Flux Integrated CC Inclusive Cross Section Measurement

- Select events with μ^- .
- Unfold the reconstructed p_μ cos(θ_μ) distributions to estimate the true muon kinematics.
- Measure double differential p_μ cos(θ_μ) distribution and total flux integrated cross section.
- Prediction from 2 neutrino MC generators (NEUT and GENIE).