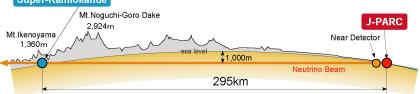
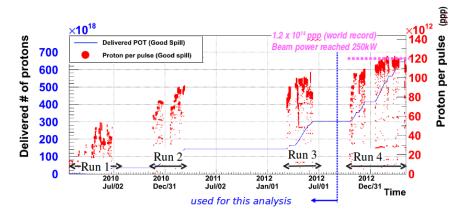
Charged Current Cross Section

Massurements at T2K


David Hadley on behalf of the T2K collaboration NuFact 2013

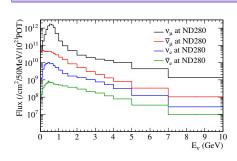
The T2K Experiment

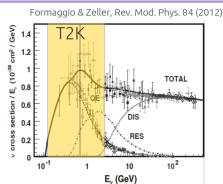


Goals

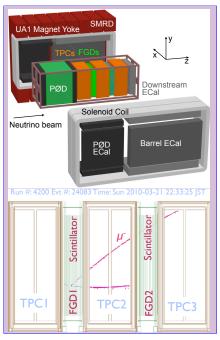
- \triangleright discover ν_e appearance in a ν_{μ} beam
- make precise measurements of ν_{μ} disappearance
- study neutrino-nucleus interactions at $E_{\nu} \sim 1 {\rm GeV}$

- A high intensity proton beam at J-PARC produces a narrow-band ν_{μ} beam with a peak energy of 0.6GeVat the far detector.
- The Far detector is Super-Kamiokande, a 50kton water Cherenkov detector, located 2.5° off-axis and 295km from the production point.
- Detectors in the ND280 complex at 280m are used to directly measure the neutrino beam properties and neutrino-nucleus interaction cross sections


The T2K Beam



- ▶ T2K has collected 6.6×10^{20} POT to date (Run 1-4).
- ▶ The analyses presented here are based on 2.7×10^{20} POT (Run 1-3 @ ND280).
- Improved analyses under development will include Run 4.

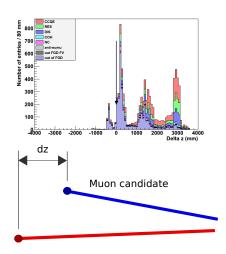

The T2K Beam

- ▶ Narrow-band beam at off axis angle.
- Mostly ν_{μ} from pion decay.
- ▶ Beam has a peak energy $\sim 0.6 {\rm GeV}$.
- Close to the quasi-elastic peak.
- On-axis near detector INGRID monitors the neutrino beam.
 - ▶ INGRID will also make measurements of neutrino cross sections.

Off-axis Near Detector (ND280)

ND280 Tracking Detector

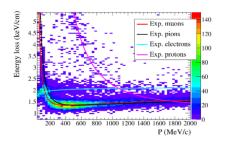
- ► The Fine Grained Detector (FGD1) consists of layers of 10 × 10mm plastic scintillator bars readout with Multi-Pixel Photon Counters (MPPCs).
- ► FGDs provide target mass and vertex reconstruction.
- ► The Time Projection Chambers (TPCs) provided PID based on dE/dx in the Argon based gas and momentum measurement from track curvature in the magnetic field.

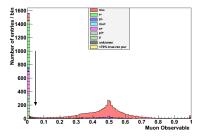

π^0 Detector

▶ see NCE talk by D. Ruterbories.

T2K, Nucl. Instrum. Meth. A 659, 106 (2011) FGD, Nucl. Instrum. Meth. A 696, 1 (2012) TPC Nucl. Instrum. Meth. A 637, 25 (2011)

2 samples selected: a QE enhanced, and an non-QE sample. CC Inclusive Selection $(\mu + X)$

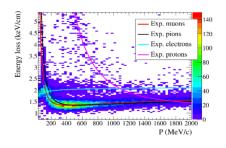

▶ 1 good-quality negative track starting within the FGD fiducial volume.

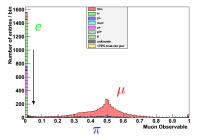


2 samples selected: a QE enhanced, and an non-QE sample.

CC Inclusive Selection $(\mu + X)$

- 1 good-quality negative track starting within the FGD fiducial volume.
- Upstream veto

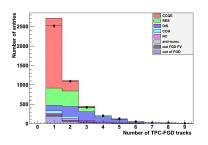




2 samples selected: a QE enhanced, and an non-QE sample.

CC Inclusive Selection $(\mu + X)$

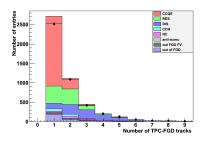
- ▶ 1 good-quality negative track starting within the FGD fiducial volume.
- Upstream veto
- Muon PID

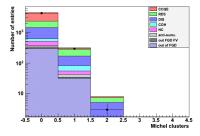


2 samples selected: a QE enhanced, and an non-QE sample.

CC Inclusive Selection $(\mu + X)$

- ▶ 1 good-quality negative track starting within the FGD fiducial volume.
- Upstream veto
- ► Muon PID

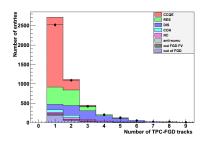

2 samples selected: a QE enhanced, and an non-QE sample.

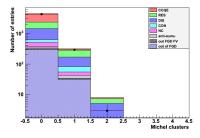

CC Inclusive Selection $(\mu + X)$

- 1 good-quality negative track starting within the FGD fiducial volume.
- Upstream veto
- Muon PID

CC QE Selection $(\mu + 0\pi)$

▶ TPC track veto


2 samples selected: a QE enhanced, and an non-QE sample.


CC Inclusive Selection $(\mu + X)$

- 1 good-quality negative track starting within the FGD fiducial volume.
- Upstream veto
- Muon PID

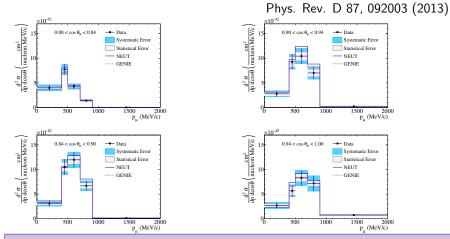
CC QE Selection $(\mu + 0\pi)$

- ▶ TPC track veto
- Michel electron veto

2 samples selected: a QE enhanced, and an non-QE sample.

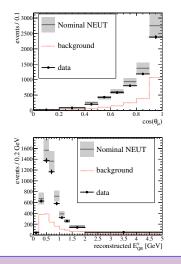
CC Inclusive Selection $(\mu + X)$

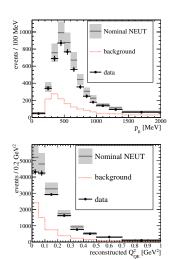
- 1 good-quality negative track starting within the FGD fiducial volume.
- Upstream veto
- Muon PID


CC QE Selection $(\mu + 0\pi)$

- ▶ TPC track veto
- Michel electron veto

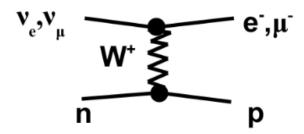
Non-QE selection

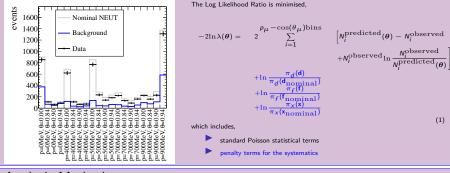

any event that fails either of the final 2 cuts


Flux Integrated CC Inclusive Cross Section Measurement

- Combine the QE and non-QE samples.
- ▶ Unfold the reconstructed $p_{\mu} \cos(\theta_{\mu})$ distributions to estimate the true muon kinematics.
- Measure double differential $p_{\mu} \cos(\theta_{\mu})$ distribution and total flux integrated cross section.

Reconstructed Kinematics





- ► CCQE efficiency=40%, purity=72%.
- ▶ Dominant background from CC resonant pion production.
- \blacktriangleright E_{ν} and Q^2 calculated from muon momentum assuming QE kinematics.

NEUT CCQE Model

- Smith-Moniz implementation CCQE
 - Dipole form factor $(M_A^{QE} = 1.2 \text{GeV})$
 - ▶ Initial Nucleon state given by relativistic Fermi gas model
- ► FSI with semi-classical cascade model
- No additional contribution from multi-nucleon effects

Analysis Method

- Simulated template histograms were fit to the observed $p_{\mu} \cos(\theta_{\mu})$ distribution.
- ▶ The CCQE cross section was extracted by weighting 5 template histograms in bins of E_{ν} .
- ▶ Systematic uncertainties were accounted for by varying bin contents with nuisance parameters.
- ▶ A maximum likelihood fit was used to find the best fit parameters.

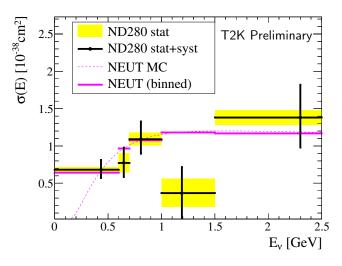
Systematic Uncertainties and Implementation

Flux

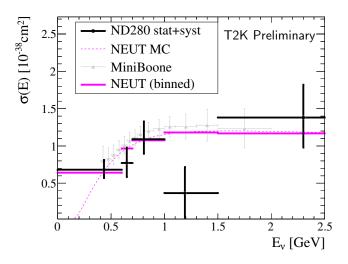
flux.

► Flux prediction based on measurements at NA61/SHINE and T2K proton beam measurements.

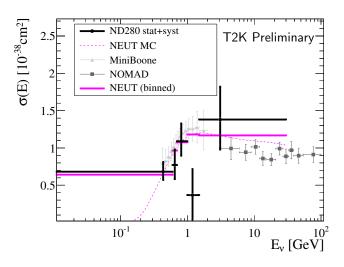
 $ightharpoonup \sim 10-15\%$ uncertainty on ν_{μ}


- Interaction Model Uncertainties
- Vary model parameters eg M_{Δ}^{RES} , p_F etc
 - Empirical parameters eg pion background normalisation uncertainties.
 - Uncertainties from comparison of NEUT generator with external data

Implementation

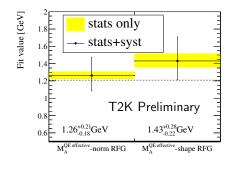

- MC prediction binned in p_{μ} , $\cos(\theta_{\mu})$, E_{ν} and interaction type.
- Reweight bin contents based on value of nuisance parameters.
- Multi-variate Gaussian priors on nuisance parameters.

Detector Uncertainties


- Estimate uncertainty on rate of selection in $p_{\mu} \cos(\theta_{\mu})$ bins.
- Dominant uncertainties are from uncertainties on the TPC momentum measurement and
- out of FV backgrounds.
 ► ~ 5 10% overall detector uncertainty.

A χ^2 test comparing the fitted result with the nominal NEUT model, with $M_A^{QE}=1.2{\rm GeV}$, gives a p-value of 17% indicating agreement between the data and the cross section model.

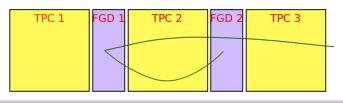
A χ^2 test comparing the fitted result with the nominal NEUT model, with $M_A^{QE}=1.2{\rm GeV}$, gives a p-value of 17% indicating agreement between the data and the cross section model.



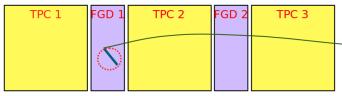
A χ^2 test comparing the fitted result with the nominal NEUT model, with $M_A^{QE}=1.2{\rm GeV}$, gives a p-value of 17% indicating agreement between the data and the cross section model.

M_A^{QE} -effective extraction

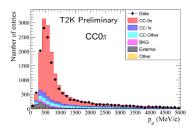
Fit p_{μ} - $\cos(\theta_{\mu})$ distribution with M_A^{QE} as a free parameter. Fit with 2 settings,

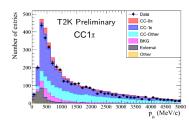

- ► M_A^{QE} shape-only
- M_A^{QE} normalisation+shape

- Previous experiments have observed a discrepancy in the fitted values of M_{Λ}^{QE} between Deuterium and heavier nuclei.
- ► A large effective M_A^{QE} is believed to account for nuclear effects not included in the model.
- ▶ Both fit results are consistent with the value used in NEUT, $M_{\bullet}^{QE} = 1.2 \text{GeV}$.


New CC Analysis

Additional TPC+FGD Tracks


- ▶ Highest momentum negative track is selected as the muon candidate.
- ► Tag pion/electrons/protons by applying PID to additional tracks.


FGD only tracks

- ▶ Use FGD only tracks to tag stopping particles.
- ► Tag pion from Michel tag or dE/dx in FGD.

New CC Analysis

T2K Preliminary	→ Data CC-0π
T2K Preliminary	CC-1tx CC-Other BKG External
150	Other
50	
0 500 1000 1500 2000 2500 300	00 3500 4000 4500 5000 p _{ii} (MeV/c)

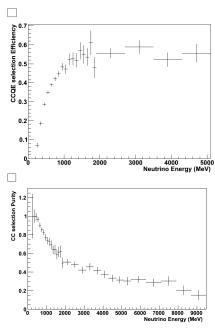
	CC0π purities	CC1π purities	CCother purities
СС0л	72.6%	6.4%	5.8%
CC1π	8.6%	49.4%	7.8%
CCother	11.4%	31%	73.8%
Bkg(NC+anti-nu)	2.3%	6.8%	8.7%
Out FGD1 FV	5.1%	6.5%	3.9%

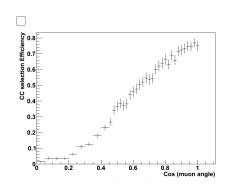
▶ Cleaner sample of CC1 π to better constrain the π background in CCQE cross section analysis.

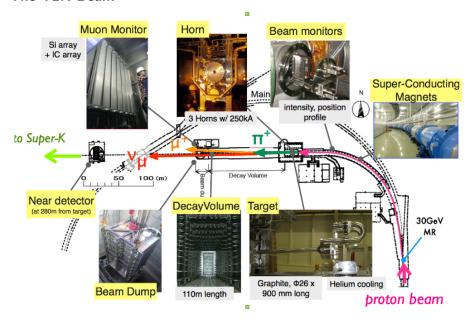
New CC Analysis

Parameter	Prior to ND280 Constraint	After ND280 Constraint (Runs 1-4)	After ND280 Constraint (2012 analysis, Runs 1-3)
M _A ^{QE} (GeV)	1.21 ± 0.45	1.223 ± 0.072	1.269 ± 0.194
M _A ^{RES} (GeV)	1.41 ± 0.22	0.963 ± 0.063	1.223 ± 0.127

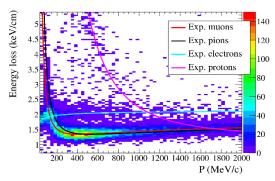
- Some example results from the fit to these samples for the oscillation analysis.
- Significant improvement on the uncertainty on these model parameters.
 - Primarily from analysis improvements, not from increased statistics.
- ► We should expect similar improvements when these samples are used for cross section measurements.
- See Oscillation Systematics talk by A. Kaboth


Summary

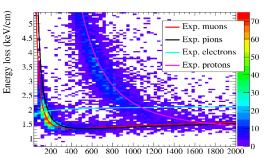

- ► T2K's first CC inclusive cross section publication was published earlier this year (Phys. Rev. D 87, 092003 (2013)).
- ► First Preliminary T2K CCQE Cross Section measurement presented in this talk.
- Extraction of CCQE energy dependent cross section and model parameters from fit to ND280 $p_{\mu} \cos(\theta_{\mu})$.
- Expect better performance in future cross section analyses
 - at least double statistics (current analysis only uses data up to summer 2012)
 - new improved reconstruction
 - selection and analysis


Backup

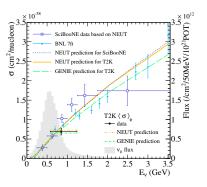
ND280 CC Selection Efficiency and Purity



The T2K Beam



ND280 TPC PID


Negative tracks in the TPC.

Flux Integrated CC Inclusive Cross Section Measurement

- Combine the QE and non-QE samples.
- ▶ Unfold the reconstructed $p_{\mu} \cos(\theta_{\mu})$ distributions to estimate the true muon kinematics.
- Measure double differential $p_{\mu} \cos(\theta_{\mu})$ distribution and total flux integrated cross section.