Gadolinium Doped Water Cherenkov Detectors

David Hadley University of Warwick

NuInt-UK Workshop

20th July 2015

Water Cherenkov Detector

Super-Kamiokande 22.5 kt fiducial mass

Physics with Large Scale WCProton DecayNeutrinosSolarSupernova

Broad physics topics, wide energy range

Accelerator

Atmospheric

Muon

THE UNIVERSITY OF WARWICK

Electron

THE UNIVERSITY OF WARWICK

Electron

Muon

Neutral Pion

THE UNIVERSITY OF

WARWI

Why Water Cherenkov? Scalability Water is cheap, non-toxic, liquid at room temperature long attenuation length achievable in pure water (SK > 100m at 400nm)**Proven technology** many years of experience (eg Super-K 1996 to date) low risk **Excellent performance** for charged particles above Cherenkov threshold

Why Water Cherenkov? Scalability Water is cheap, non-toxic, liquid at room temperature long attenuation length achievable in pure water (SK > 100m at 400nm)**Proven technology** many years of experience (eg Super-K 1996 to date) low risk **Excellent performance** for charged particles above Cherenkov threshold Why not Water Cherenkov? Blind to particles below Cherenkov threshold for protons > 1.1 GeV/c.

Neutron Capture on Hydrogen

Neutrino energy (MeV)

Neutron Capture on Gadolinium

arXiv:0811.0735 [hep-ex] $V_e + p \rightarrow e^+ + n$ Number of Events 35 30 25 **V**_e 20 15 10 e^+ Gd 5 0 Initial charged **Number of Delayed Signals** lepton signal Delayed y signal 10 ² 20 µs capture time $E_v \sim 8 \text{ MeV cascade} (\sim 4 \text{ MeV visible})$

Fast capture time (small ΔT window) Higher energy y signal

Neutron Capture on Gadolinium

Cross section for neutron capture: Gd (49,700 b), H (0.3 b)

0.1% Gd fraction gives 90% neutrons captured on Gd.

WARWICK

Applications: Supernova Relic Neutrinos

A low energy example

Directly observable local supernova are all too rare

Alternative is to measure diffuse supernova background DSNB/SRN

Very low rate Large backgrounds

Applications: Supernova Relic Neutrinos

A low energy example

Directly observable local supernova are all too rare

Alternative is to measure diffuse supernova background DSNB/SRN

Very low rate Large backgrounds

Removed by requiring coincidence with neutron

Complimentary to LAr proton measurements

WARWI

Applications: Accelerator based long baseline neutrino oscillations

Tagging neutron reduces wrong-sign background in anti-neutrino mode

Impact on sensitivity being evaluated by Hyper-K Gd-doped Near Detector (TITUS) working group

EGADs

(Evaluating Gadolinium's Action on Detector Systems)

200 t instrumented Water Cherenkov detector to test introduction of a water soluble Gadolinium in a Gd(SO₄)₃

WARWICK

EGADs

(Evaluating Gadolinium's Action on Detector Systems) Need a water filtration system that removes impurities but not

EGADs

(Evaluating Gadolinium's Action on Detector Systems) Light @ 15 meters in the 200-ton tank (Gd water with PMT's)

THE UNIVERSITY OF WARWICK

Super Kamiokande

In June 2015 the Super-K collaboration approved Gd-loading. Gd is also an option for Hyper-K.

ANNIE (Accelerator Neutrino Neutron Interaction Experiment)

arXiv:1504.01480 [physics.ins-det]

WARWICK

TITUS Proposed Intermediate Water Cherenkov Detector for T2HK 2 m 7 m **TITUS** Detector Maximise cancellation of uncertainties between near and far detector Identical target nucleus and detector technologies ~2 km from beam source match the flux at the far detector 11 m 22 m Magnetised Muon Range Detector Measure momentum of 70 z (cm) z (cm) escaping muons. 60 35 50 30 40 E In-situ cross-check of sign 25 30 selection with neutron tagging²⁰ 20 method. E_ = 0.3 GeV E = 0.4 GeV 10 8 22 x (cm) x (cm)

Gadolinium Doped Water Cherenkov Detectors

Neutron tagging with Gd-doped WC significantly extends the physics reach of large scale Water Cherenkov detectors.

Technical implementation has been successfully demonstrated (EGADs etc).

Gd-doping is the future for Super-K (and Hyper-K?).

To fully exploit this new technology, we need to make measurements of neutron multiplicity for v-Oxygen interactions and build models that reproduce them.

Thank you for listening

David Hadley University of Warwick 29th May 2015 References sk.icrr.u-tokyo.ac.jp hyperk.org t2k-experiment.org

arXiv:hep-ph/0309300 arXiv:1311.3738 arXiv:0811.0735 arXiv:1109.3262 arXiv:1201.1017 arXiv:1504.01480

ullull-

ul.

Super-K Measurements of Neutron Multiplicity

THE UNIVERSITY OF WARWICK

ANNIE Events

ANNIE Neutron Transit

Neutron Capture on Gd

Kamiokande Detectors

Proton Decay $p \rightarrow e^+ + \pi^0$ $> 1.3 \times 10^{35}$ years 90% CL $p \rightarrow \overline{v} + K^+$ $> 3.2 \times 10^{34}$ years 90% CL

Hyper-K Physics Goals

Accelerator Atmospheric Leptonic CP violation Mass Hierarchy determination var

Broad physics programme.

Originally detectable signal

New signal

DSNB at GADZOOKS

